CATECHOLAMINE METABOLISM AND AMPHETAMINE EFFECTS ON SENSITIVE AND INSENSITIVE MICE

A. JORI and S. GARATTINI
Istituto di Ricerche Farmacologiche "Mario Negri" Via Eritrea, 6220157 Milano, Italy

IT HAS been found that amphetamine elicits in mice a strain-dependent symptomatology (Weaver and Kerley, 1962; Brown, 1965). C₃H mice have been previously reported to be considerably less sensitive than other strains to the stimulating activity of amphetamine (Dolfini et al., 1969a, 1969b; Dolfini et al., 1970). The data presented summarise some differences and similarities between C₃H and NMRI mice in the action of d-amphetamine (Table 1).

DIFFERENCES IN THE ACTION OF d-AMPHETAMINE IN THE TWO STRAINS

- (1) d-Amphetamine neither increases the spontaneous motility, nor, does it induce the stereotyped behaviour and grouping effect in C_3H mice as do the doses active in NMRI mice.
- (2) d-Amphetamine does not significantly increase the body temperature of C_3H mice, while it elicits a dose-dependent hyperthermia in NMRI mice (3.75–30 mg/kg i.p.). On the contrary, at low doses, it decreases the body temperature in C_3H mice (CACCIA et al., 1973).
- (3) d-Amphetamine decreases noradrenaline (NE) in the brain-stem and increases homovanillic acid (HVA) in the striatum, but it only slightly affects noradrenaline and does not modify HVA concentrations of C₃H mice (CACCIA et al., 1973).

SIMILARITIES IN THE ACTION OF d-AMPHETAMINE IN THE TWO STRAINS

- (1) The distribution of amphetamine is similar in C₃H and NMRI mice. No differences were observed between the two strains in the concentration of amphetamine in whole brain and in specific areas such as striatum and brain-stem at various times after administration of the drug.
- (2) The anorexigenic effect of d-amphetamine seems to be similar in C_3H and in NMRI mice.
- (3) d-Amphetamine increases plasma FFA to a similar extent in C₃H and in NMRI mice.
- (4) d-Amphetamine elicits a clear dose-dependent hyperthermic effect in reserpinised mice of both strains. These data are in sharp contrast with the lack of hyperthermic activity in normal untreated C₃H mice.

The thermic response to amphetamine in normal untreated mice is probably a polygenically-inherited trait. This hypothesis is supported by the results of pharmacogenetic experiments conducted in our Institute involving the cross mating of C₃H and NMRI mice (Fig. 1); (Jori and Price-Evans, unpublished results). In an attempt to understand this genetically determined different reactivity to amphetamine, the basal brain concentrations of the biogenic amines and of their metabolites were compared

TABLE 1

No. determinations	Effects of amphetamine	Strain	
		C ₈ H	NMRI
72	Hypermotility	NO	YES
72	Stereotyped behaviour	NO	YES
18	Hyperthermia (°C)	-0.7 ± 0.1	$+2.5 \pm 0.1 \ddagger$
8	NE decrease (ng/g)	-60 ± 15	$-150 \pm 20 \ddagger$
4	HVA increase (ng/g)	-14 ± 20	$+224 \pm 15 \ddagger$
5	Brain Amphetamine (μg/g)	$5\cdot 2\pm 0\cdot 1$	5.5 ± 0.2
3	Food intake * (g/2 hr/6 mice)	0 + 1	$\frac{1}{2+1}$
5	Plasma-FFA increase (mequiv/1.)	$+715 \ddagger \pm 35$	$+727 \ddagger \pm 39$
18	Hyperthermia in reserpinised mice* (°C)	+3.91 + 0.4	$+3.51 \pm 0.2$

[‡] P < 0.01 vs untreated mice. Mice were caged in groups of 6 and were given d-amphetamine-sulphate at a dose of 7.5 mg/kg i.p. or* 5 mg/kg i.p. Temperature and biochemical determinations were performed 30 or 60 min after treatment. Food intake of control mice was $11 \text{ g} \pm 0.5$

in the two strains (Table 2). No differences were noted for the brain serotonin (5HT) and 5-hydroxyindolacetic acid (5HIAA), for NE in the brain-stem, and for

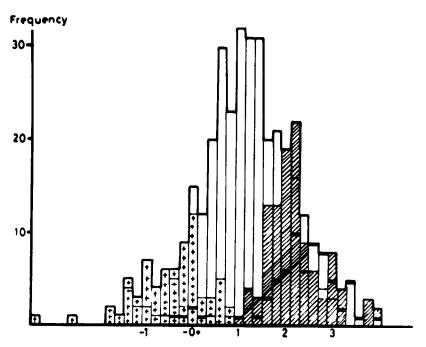


Fig. 1.—Frequency distribution of temperature changes 30 min after *d*-amphetamine sulphate (7.5 mg/kg/i.p.), in the various groups of mice. (312 mice were used.)

11.	NMRI	mice
\vdots	C_3H	mice
	F_1	mice
	F_2	mice

dopamine (DA) and HVA in the striatum However a basic difference in the striatum dopamine metabolism was suggested by determination of DA disappearance after blocking catecholamine synthesis with α -methyltyrosine and of the HVA accumulation after blocking its active transport with probenecid. These experiments demonstrated

TABLE	2
-------	---

No. determinations	Biochemical parameters	Strain	
		C ₃ H	NMRI
		$(ng/g \pm s.e.)$	
8	Brain 5HT	285 ± 25	250 ± 20
8	Brain 5HIAA	490 ± 10	480 ± 10
8	Brain Stem NE	570 ± 20	540 ± 20
6	Striatum DA	4280 ± 160	4260 ± 200
4	Striatum HVA	279 ± 15	240 ± 15
4	Striatum HVA after		
	Probenecid*	389 ± 8 ‡	630 ± 36
	Rate constant of DA loss after	_ ,	0.100 + 0.00
	α MTyrosine K (hr ⁻¹)†	0.136 ± 0.017 ‡	0.188 ± 0.02

 $[\]ddagger P < 0.01$ versus NMRI mice. * Probenecid was given at a dose of 200 mg/kg i.p. HVA was determined 90 min after Probenecid. $\dagger K$ represents the slope \times 2·3 of the curve obtained by plotting the log-concentrations (μ g/g) of dopamine at 0, 1, 2 and 3 hr after the administration of α -methyltyrosine (α MT) (500 mg/kg/ i.p.).

a lower DA turnover rate in C₃H than in NMRI mice. These last data are preliminary and other experiments are in progress. We consider that the comparative use of genetically insensitive and sensitive strains, can provide a useful model for the understanding of the mechanism of the action of amphetamine and the factors responsible for its tolerance and its abuse.

Acknowledgment—These studies have been supported by a grant of the G. and L. Pfeiffer Foundation, N.Y., U.S.A.

REFERENCES

Brown A. M. (1965) Lab. Anim. Care 15, 111-118.

CACCIA S., CECCHETTI G., GARATTINI S. and JORI A. (1973) Br. J. Pharmacol. (in press).

DOLFINI E., GARATTINI S. and VALZELLI L. (1969a) Europ. J. Pharmacol. 7, 220-223.

DOLFINI E., GARATTINI S. and VALZELLI L. (1969b) J. Pharm. Pharmac. 21, 871-872.

DOLFINI E., RAMIREZ DEL ANGEL A. and GARATTINI S. (1970) Europ. J. Pharmacol. 9, 333-336. WEAVER L. C. and KERLEY T. L. (1962) J. Pharmac. Exp. Ther. 135, 240-244.